2-2018

Effect of Stable and Unstable Surfaces on the Serratus Anterior Muscle Activation in a Kinetic-chain Exercise Among Healthy Adults

Navpreet Kaur
University of St. Augustine for Health Sciences, nkaur@usa.edu

Kunal Bhanot
University of St. Augustine for Health Sciences, kbhanot@usa.edu

Germaine Ferreira
University of St. Augustine for Health Sciences, gferreira@usa.edu

Follow this and additional works at: https://soar.usa.edu/pt

Part of the Physical Therapy Commons

Recommended Citation

https://soar.usa.edu/pt/28

This Conference Proceeding is brought to you for free and open access by the Faculty and Staff Research at SOAR @ USA. It has been accepted for inclusion in Physical Therapy Collection by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu.
Effect of Stable and Unstable Surfaces on the Serratus Anterior Muscle Activation in Kinetic Chain Exercises among Healthy Adults

Presented by
Navpreet Kaur, PT, DPT, PhD, MTC
Co-Investigators
Kunal Bhanot, PT, PhD, MTC, CMTPT, FAAOMPT
Germaine Ferreira, PT, DPT, MSPT

MYOFASCIAL CONNECTIONS

PURPOSE

To determine if the serratus anterior (SA) muscle activity changes with kinetic chain recruitment on stable and unstable surfaces.

METHODS

Subjects
21 healthy males with mean age 26.7 ± 2.6 yrs.

Muscles Analyzed
SA, LD, and EO muscles on the dominant side, GM bilaterally, and FA of the contralateral side

Exercises Analyzed (Stable and Unstable)
FPP, Closed Chain Serape (CS), Open Chain Serape (OS)
RESULTS

(One-way repeated measures ANOVA)

SA Muscle Activation - STABLE

<table>
<thead>
<tr>
<th>Exercises</th>
<th>SFPP</th>
<th>SCS</th>
<th>SOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MVIC</td>
<td>85%</td>
<td>115%</td>
<td>90%</td>
</tr>
</tbody>
</table>

* Statistically significant

RESULTS

(One-way Repeated measures ANOVA)

SA Muscle Activation - UNSTABLE

<table>
<thead>
<tr>
<th>Exercises</th>
<th>UFPP</th>
<th>UCS</th>
<th>UOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MVIC</td>
<td>85%</td>
<td>138%</td>
<td>157%</td>
</tr>
</tbody>
</table>

* Statistically significant

RESULTS

(Paired t-test: Stable Vs Unstable)

SA MUSCLE ACTIVATION

<table>
<thead>
<tr>
<th>Exercises</th>
<th>SFPP</th>
<th>UFPP</th>
<th>SCS</th>
<th>UCS</th>
<th>SOS</th>
<th>UOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>% MVIC</td>
<td>85%</td>
<td>138%</td>
<td>86%</td>
<td>106%</td>
<td>161%</td>
<td>157%</td>
</tr>
</tbody>
</table>

* Statistically significant from FPP

TAKE HOME MESSAGE

• Our study strengthens the concept of recruitment of the kinetic chain during exercises for better muscle activation.

• Clinicians also need to be aware that adding an unstable surface to an exercise does not always imply higher activation of the involved muscles.

REFERENCES

QUESTIONS?