Blood Flow Restriction Training for Chronic Quadriceps Weakness and Atrophy: A Case Report

Tobi Baldwin
University of St. Augustine for Health Sciences, tbaldwin@usa.edu

Fred Baldwin
Brooks Rehabilitation, fbaldwinpt@hotmail.com

Follow this and additional works at: https://soar.usa.edu/pt

Part of the Physical Therapy Commons

Recommended Citation
https://soar.usa.edu/pt/23

This Conference Proceeding is brought to you for free and open access by the Faculty and Staff Research at SOAR @ USA. It has been accepted for inclusion in Physical Therapy Collection by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu.
Blood Flow Restriction Training for Chronic Quadriceps Weakness and Atrophy: A Case Report

Tobi Baldwin¹, Fred Baldwin²

¹University of St. Augustine for Health Sciences, St. Augustine, FL
²Brooks Rehabilitation Motion Analysis Center, Jacksonville, FL

BACKGROUND

- Traditional strength training involves high load and high intensity to increase strength and hypertrophy
- Blood flow restriction (BFR) training has been used when these parameters are not appropriate for certain patient populations such as geriatric, post operative, and acute orthopedic injury.
- What if traditional strength training is tolerated and appropriate for a healthy individual with chronic weakness and atrophy but has not been effective, could BFR be used to increase strength and hypertrophy for this patient population?

PURPOSE

The purpose of this case report is to describe the use of blood flow restriction training in a recreationally active male who was fully functional but continued to demonstrate chronic unilateral quadriceps weakness and atrophy despite participation in traditional strength training programs.

CASE DESCRIPTION

- 37 year old male
- 25 years post well healed right femur fracture
- Recreationally active in weight lifting, high intensity interval training and played college football
- Girth and strength deficits at initial evaluation
- Performed light isotonic, single leg quadriceps strengthening with BFR
- BFR unit set according to manufacturer instructions
- 80% occlusion maintained throughout the exercise
- Exercises performed 2x/week for 6 weeks

RESULTS

- Isokinetic testing at initial evaluation, 3 weeks into the training program and upon completion at 6 weeks.
- 15% deficit in peak torque improved to an 8% advantage over the uninvolved leg
- Total percentage change of 27% for peak torque
- Knee extension to % body weight increased
- Girth measurement increased by 1.5 to 2.0 centimeters.

DISCUSSION

- Blood flow restriction training has been used to improve quadriceps strength and muscle size.
- It has been used to augment traditional strength training in athletes.
- Upon completion of 6 weeks of blood flow restricted training, hypertrophy and improved strength were noted
- These changes were not able to be achieved in the past with traditional strength training at higher intensities and resistances.
- BFR may be beneficial for chronic atrophy and strength deficits when traditional strength training is ineffective

REFERENCES


Girth Measurements in centimeters

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Right</th>
<th>3 weeks</th>
<th>6 weeks</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm proximal</td>
<td>57</td>
<td>55</td>
<td>56</td>
<td>56.5</td>
<td>+1.5</td>
</tr>
<tr>
<td>10 cm proximal</td>
<td>50</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>+2</td>
</tr>
<tr>
<td>Mid patella</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>15 cm distal</td>
<td>43.5</td>
<td>41</td>
<td>42</td>
<td>42</td>
<td>+1</td>
</tr>
</tbody>
</table>

Knee Extension to % Body Weight

<table>
<thead>
<tr>
<th></th>
<th>Initial</th>
<th>Right</th>
<th>3 weeks</th>
<th>6 weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 cm flex</td>
<td>0</td>
<td>50</td>
<td>56</td>
<td>56.5</td>
</tr>
<tr>
<td>15 cm ext</td>
<td>0</td>
<td>50</td>
<td>56</td>
<td>56.5</td>
</tr>
</tbody>
</table>

BFR unit placed on proximal right thigh

Girth measurements increased by 1.5 to 2.0 centimeters.