An Orthopedic Solution to a Neurological Problem - Core Stabilization Post Stroke: A Case Report

James E Smith, SPT, Lindsay Perry, PT, DPT, NCS
University of St. Augustine for Health Sciences, Department of Physical Therapy,

BACKGROUND PURPOSE

In the United States, strokes have been the leading cause for serious long-term disability.¹ Two impairments that are responsible for this trend of long-term disability are the loss of standing balance and impaired mobility.² Common interventions used to treat these impairments and limitations usually involve high repetition task-oriented training, balance/proprionic training in standing and sitting, gait training, treadmill training, constraint-induced movement therapy, cardiovascular and strength training.³,⁴

The connection between traditional neurological rehabilitation techniques and core stabilization and their efficacy has been well documented, however, articles on the combination of core stabilization and spinal mobilization techniques with traditional neurological physical therapy interventions is sparse.

The purpose of this case report is to report the outcomes of combining manual therapy techniques for spinal mobility and stability with traditional neurological approaches to stroke rehabilitation.

CASE DESCRIPTION

Body Structure/Function

- General Weakness, right lower extremity greater than right upper extremity
- Decreased Endurance
- Limited lower extremity flexibility
- Limited Lumbar spine mobility
- Weakness/decreased ability to recruit core stabilizers

Activity Limitations

- Balance
- Walking up and down stairs
- Walking on uneven/unstable surfaces

Participation Restrictions

- Fear of falling
- Unable to go shopping with children/walk in crowded settings

Personal Factors

- Supportive family
- High previous level of function
- Stairs into home

METHODS

- Manual Stretching
- Spinal Mobilizations
- Home Exercise Program
- Core/LE strengthening
- NM Re-Ed
- Balance Training

RESULTS

<table>
<thead>
<tr>
<th>Activity</th>
<th>Measurements</th>
<th>Initial Evaluation</th>
<th>7 Weeks Discharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berg Balance Scale</td>
<td>35/56</td>
<td>48/56 MDC of 4.9 met5</td>
<td></td>
</tr>
<tr>
<td>Timed Up and Go</td>
<td>19 Seconds</td>
<td>11 Seconds MDC 3.53 sec. met6</td>
<td></td>
</tr>
<tr>
<td>Lumbar Intervertebral Mobility</td>
<td>2/6 on PIVM Scale</td>
<td>3/6 on PIVM Scale</td>
<td></td>
</tr>
<tr>
<td>LE muscle length</td>
<td>56 deg. Hamstring Length Bilaterally, + Thomas test</td>
<td>76 deg. Hamstring Length Bilaterally, - Thomas Tests</td>
<td></td>
</tr>
<tr>
<td>Core Strength/ LE Strength</td>
<td>Unable to perform/hold Neutral Spine/Pelvic Tilt 4-/5 MMT RLE</td>
<td>Patient able to hold Neutral Spine for 10-20 seconds 4+/5 MMT RLE</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

- **CLINICAL RELEVANCE**

These findings illustrate that the combination of traditional orthopedic approaches to traditional neuromuscular approaches could be very helpful when treating a patient post CVA. The findings also illustrate the significance of the relationship of the core musculature and lumbar spine to the lower kinetic chain and how the proper biomechanics of each are dependent on each other.

DISCUSSION

- The patient demonstrated improved lower extremity and core strength, endurance, improved lower extremity, low back mobility and flexibility.
- Impairment based improvements may have improved performance of Berg balance scale and Timed Up and Go test.
- Evidence supports increased core strength, spinal mobility and lower extremity strength coincide with improvements in functional standing balance and mobility, which correlate with this patient's' outcomes.