The Effectiveness of Heart Rate Variability Biofeedback in Conjunction with Traditional Treatment for Thoracic Outlet Syndrome in a 25-year-old female: A Case Report

Sepehr Rezaei
University of St. Augustine for Health Sciences, s.rezaei@usa.edu

Follow this and additional works at: https://soar.usa.edu/casmsummer2020

Part of the Orthopedics Commons, Physical Therapy Commons, and the Physiotherapy Commons

Recommended Citation

This Poster/presentation is brought to you for free and open access by the Research Day, San Marcos Campus at SOAR @ USA. It has been accepted for inclusion in San Marcos, Summer 2020 by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu, erobinson@usa.edu.
The Effectiveness of Heart Rate Variability Biofeedback in Conjunction with Traditional Treatment for Thoracic Outlet Syndrome in a 25-year-old female: A Case Report

Sepehr Rezaei, SPT

INTRODUCTION/BACKGROUND

- Thoracic outlet syndrome (TOS) is a complex condition that causes pain, tingling sensation, hyposthesia, muscle atrophy, weakness, and edematous changes in the upper quadrant (UQ) and down upper extremity (UE). 3,7,8,16,17
- Compression of neurovascular bundles in the interscalene triangle, costoclavicular space, and under pectoralis minor caused by trauma, congenital malformations such as a cervical rib, and abnormal/poor postures from muscle imbalances can lead to TOS. 3,7,8,16,17
- Depression, anxiety, and asthma impact posture and respiratory muscles 1,4,5,6,11,12
- Interventions for TOS can consist of correcting posture by addressing muscle imbalance, decreasing tone and muscle tightness and rib mobilization and in rare cases rib resection. 3,7,8,13,16,17
- There is Limited research on the effectiveness of Heart Rate Variability Biofeedback (HRVBF) for treatment of TOS

METHODS

- **Week 1-2**
 - Soft Tissue Massage
 - Myofascial Release
 - Trigger Point Release
 - 1st rib and thoracic spine mobilization
 - Corrective Stretching (UT, LS, Scalene, Pec Min, Pec Major)
 - Nerve glides (median, radial, & ulnar)
 - Chin Tucks (DNF training)
 - Scapular Positioning
 - Posture Correction

- **Week 3-5**
 - HRVBF: diaphragmatic breathing, positive affirmation and visualization, positive reinforcement to movement, coupled with HR monitor
 - Motor control training on shoulder and postural mm
 - Education on work ergonomics

- **Week 5-6**
 - HRVBF
 - Strength training for rotator cuff and postural mm
 - Review HEP
 - Review postural and ergonomics
 - Review breathing pattern strategies

RESULTS

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Initial Exam</th>
<th>Latest Progress Note</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPRS</td>
<td>Shoulder and neck pain: 8/10 at worst and 4/10 at best</td>
<td>0/10 for the past 3 weeks</td>
</tr>
<tr>
<td>UEFI</td>
<td>47/80</td>
<td>71/80</td>
</tr>
<tr>
<td>Quality of Life</td>
<td>Physical Score (PCS): 31.03 Mental Score (MCS): 40.86</td>
<td>PCS: 40.43 M CS: 52.73</td>
</tr>
<tr>
<td>Sensory</td>
<td>Impaired sensation over R Anterior UQ, Entire R scapula, and R UE</td>
<td>WNL</td>
</tr>
<tr>
<td>Range of Motion (ROM)</td>
<td>Cervical: Ext WNL * SB. L limited 40% * R shoulder: Flx 120° Mm guarding Abd 90° Mm guarding ER 55° Mm guarding</td>
<td>Cervical: WNL R shoulder: Flx 160/162 Abd 180/180 ER 105/110</td>
</tr>
<tr>
<td>L was WNL *=Pain</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strength MMT of R UE: L was WNL</td>
<td>Middle Deltoid 3/5 Serratus Anterior 2/5 Supraspinatus 2/5 Infraspinatus/Teres Minor 2+/5 Middle Trapezius 3-/5 Lower Trapezius 3-/5 Latissimus Dorsi 3+/5 Rhomboids 3-/5 Grip strength L18kg / R8kg</td>
<td>5/5 4/5 4/5 4/5 4/5 4/5 4/5 4/5 L32kg / R27 kg</td>
</tr>
</tbody>
</table>

DISCUSSION/CONCLUSION

- Poor posture, tone/hypertrophy of scalene, and tight pectoral muscles can cause TOS. 3,7,8,16,17
- People with major depressive disorder experience changes in posture which include increased head flexion and increased thoracic kyphosis. 15,11
- Increased respiratory muscle tension, hypertrophy, and trigger points are found in high anxiety patients. 1,5,6,12
- People with respiratory distress like asthma over utilize their scalene muscles to aid with breathing. 12
- Substantial evidence has shown that HRVBF can be used for treatment of a variety of biophysiological and physiological disorders like asthma, emphysema, depression, and anxiety. 2,4,6,9
- Years of depression, anxiety, and asthma have impacted this pt’s posture and muscle tone and have manifested TOS which has impaired her ROM, sensory system, strength/motor control, and increased fear and avoidance of motions.
- Resolving the musculoskeletal impairments only went so far, what was found to be most beneficial for this pt was the implementation of HRVBF in relaxing the pt through her day and not utilizing accessory muscles to breathe. 1,2,3,6,9
- Pt was set for a 1st rib resection and was thought to have possible nerve damage but was able to recover with conservative treatment in conjunction with HRVBF.
- More studies need to be conducted to see if there is a relationship with asthma and depression/anxiety disorders with TOS and the impact of HRVBF in a POC for TOS.

CLINICAL APPLICATION

- Strong evidence that Depression impacts posture and Anxiety and asthma impact breathing
- Implementing HRVBF will help with relaxation and will aid in decreasing the use of accessory muscles during respiration
- HRVBF in conjunction with Physical Therapy intervention may be beneficial in a POC for treatment of TOS

ACKNOWLEDGMENT

I would like thank the participant, my clinical instructors Mark C. Jones, DPT, PT and James Whitaker, DPT, PT and the University of St. Augustine.

ABBREVIATIONS

HEP

REFERENCES