Weight-Bearing Interventions to Decrease Spasticity and Improve Gait in Stroke Patients: A Case Report

Melin Nguyen
University of St. Augustine for Health Sciences, m.nguyen4@usa.edu

Shelby Peterson
University of St. Augustine for Health Sciences, s.peterson2@usa.edu

Jessika Sun
University of St. Augustine for Health Sciences, j.sun@usa.edu

Irene Taing
University of St. Augustine for Health Sciences, i.taing@usa.edu

Faris Alshammari
University of St. Augustine for Health Sciences, falshammari@usa.edu

Follow this and additional works at: https://soar.usa.edu/casmfall2019

Part of the Occupational Therapy Commons, Physical Therapy Commons, and the Physiotherapy Commons

Recommended Citation
Nguyen, Melin; Peterson, Shelby; Sun, Jessika; Taing, Irene; and Alshammari, Faris, "Weight-Bearing Interventions to Decrease Spasticity and Improve Gait in Stroke Patients: A Case Report" (2019). *San Marcos, Fall 2019*. 1.
https://soar.usa.edu/casmfall2019/1

This Book is brought to you for free and open access by the Research Day, San Marcos Campus at SOAR @ USA. It has been accepted for inclusion in San Marcos, Fall 2019 by an authorized administrator of SOAR @ USA. For more information, please contact soar@usa.edu, erobinson@usa.edu.
Weight-Bearing Interventions to Decrease Spasticity and Improve Gait in Stroke Patients: A Case Report

Melin Nguyen, SPT, Shelby Peterson, SPT, Jessika Sun, SPT, Irene Taing, SPT, Faris Alshammari, PT, PhD
University of St. Augustine for Health Sciences, San Marcos, CA

INTRODUCTION

- Stroke, also known as cerebrovascular accident (CVA), is an interruption of blood supply to the brain, either by blockage of arteries (ischemic stroke) or bursting of vessels (hemorrhagic stroke), preventing brain tissues from receiving oxygen.
- According to Central Disease Control and Prevention (CDC), stroke is the 5th leading cause of death in the United States.
- While stroke affects multiple systems in the body, it can cause spasticity in muscles of the body affecting a person’s ability to walk in a coordinated manner. Spasticity is an abnormal increase in tone of the muscles that can interfere with rehabilitation in those who have experienced a stroke.²

PURPOSE

The purpose of this case report is to determine the success of weight-bearing interventions on spasticity reduction and improved gait patterns for patients who are recovering from a chronic CVA.

CASE DESCRIPTION

Patient Profile:
- The patient is a 61-year-old male who experienced a left hemorrhagic CVA in September 2017 causing right hemiparesis.
- Prior to his CVA, he was independent in all life aspects and was an active runner and golfer.
- He has received prior rehabilitation, including outpatient physical therapy and occupational therapy.

Body Structure and Function Limitations:
- Right upper and lower extremity spasticity
- Circumduction gait
- Weakness and decreased range of motion of right extremities

Activity Limitations:
- Inability to drive
- Decreased ability to negotiate stairs without holding on to the rail
- Decreased ability to ambulate safely

Participation Restrictions:
- Driving to therapy sessions
- Going for >1 mile walks around the neighborhood
- Playing golf
- Reaching behind back during bathing
- Preparing his own lunch.

EXAMINATION FINDINGS

<table>
<thead>
<tr>
<th>Joint</th>
<th>Initial Evaluation PROM (Right/Left)</th>
<th>Location</th>
<th>Modified Ashworth Scale</th>
<th>Week 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsiflexion</td>
<td>-5/4</td>
<td>R Shoulder Flexors</td>
<td>1+</td>
<td></td>
</tr>
<tr>
<td>Plantarflexion</td>
<td>42/60</td>
<td>R Shoulder Extensors</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Knee Extension</td>
<td>0/0</td>
<td>R Elbow Flexors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Knee Flexion</td>
<td>130/135</td>
<td>R Elbow Extensors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hip Flexion</td>
<td>110/114</td>
<td>R Hip Flexors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Hip Extensors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Knee Flexors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Knee Extensors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>R Plantarflexors</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

OUTCOMES

<table>
<thead>
<tr>
<th>Outcome Measure</th>
<th>Week 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>TUG (fall risk ≥15 seconds)</td>
<td>TUG time (with quad cane): 48.2 sec</td>
</tr>
<tr>
<td></td>
<td>TUG time (without quad cane): 1 min 23 sec</td>
</tr>
<tr>
<td></td>
<td>TUG time (with AFO and quad cane): 43.2 sec</td>
</tr>
<tr>
<td></td>
<td>TUG time (with ACE wrap and quad cane): 58.5 sec</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Joint</th>
<th>Discharge PROM (Right/Left)</th>
<th>Location</th>
<th>Modified Ashworth Scale</th>
<th>Week 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dorsiflexion</td>
<td>-3/4</td>
<td>R Shoulder Flexors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Plantarflexion</td>
<td>37/60</td>
<td>R Shoulder Extensors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Knee Extension</td>
<td>0/0</td>
<td>R Elbow Flexors</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Knee Flexion</td>
<td>138/135</td>
<td>R Elbow Extensors</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Hip Flexion</td>
<td>120/114</td>
<td>R Hip Flexors</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Hip Extensors</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Knee Flexors</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Knee Extensors</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Dorsiflexors</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R Plantarflexors</td>
<td>1+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PLAN OF CARE

Frequency and Duration:
- 1 time/week for 4 weeks

Interventions:
- Stretching
 - Standing calf stretches
- Strengthening
 - Seated toe raises
- Weight-Bearing
 - Pre-Gait Sequence
- Gait Training
 - Obstacle course
- Patient Education
 - Utilizing R UE to prevent further muscle atrophy and tightness
- Progression Criteria:
 - Based on patient’s functional status
 - Exercises were progressed through the pre-gait sequence, obstacle courses with objects to step over and ambulating various distances.

DISCUSSION AND CONCLUSION

- For a patient with chronic CVA, weight-bearing interventions are effective in reducing spasticity, increasing ROM, and improving gait patterns.
- Application of weight-bearing through the paretic limb has demonstrated improvements in this patient’s TUG and 5 xSTS score.

CLINICAL RELEVANCE

- In addition to stretching and strengthening, weight-bearing interventions should be incorporated into intervention plans for patients who are recovering from a CVA.
- Interventions should be task-oriented to show the best improvements with activity limitations and participation restrictions in patients recovering from a CVA.

REFERENCES

ACKNOWLEDGMENT

We thank the participant, NM III contributing faculty, and the student helpers.